DARSTELLUNG VON FLUORARSENIGSÄUREESTERN

FRIEDHELM KOBER UND WERNER JÜRGEN RÜHL

Eduard Zintl-Institut für Anorganische und Physikalische Chemie der Technischen Hochschule, Darmstadt (Bundesrepublik Deutschland)

(Eingegangen am 22. Juni 1973)

ZUSAMMENFASSUNG

Versuche zur Darstellung der Fluorarsenigsäureester F_2AsOR und $FAs(OR)_2$ durch Alkoholyse von AsF₃ und $F_2AsN(CH_3)_2$ bzw. durch Umsetzung von AsF₃ und BF₃ mit As(OR)₃ werden beschrieben.

Durch Umsetzung von AsF_3 mit $As(OR)_3$ werden Fluorester mit beliebigen Resten R erhalten. Die Mengenverhältnisse der Difluor- und Monofluorester im System $AsF_3/F_2AsOR/FAs(OR)_2/As(OR)_3$ werden bestimmt. Die ¹⁹F und ¹H-NMR-Daten der Fluorester sind angegeben.

SUMMARY

The preparation of arsinic acid esters F_2AsOR and $FAs(OR)_2$ by the alcoholysis of AsF_3 and $F_2AsN(CH_3)_2$ and the reaction of AsF_3 and BF_3 with $As(OR)_3$ are described.

The reactions of AsF_3 with $As(OR)_3$ lead to the formation of fluoroesters containing various R groups. The ratio of the difluoro- and monofluoro-arsinic acid esters present in the system $AsF_3/F_2AsOR/FAs(OR)_2/As(OR)_3$ has been determined. ¹⁹F and ¹H NMR spectral data are presented.

EINLEITUNG

Durch Umsetzung von Silyläthern bzw. Arsenig- und Arsensäureestern mit AsF₃ konnten nach Gleichungen (1)-(4) einige Mono- und Difluorarsenigsäureester FAs(OR)₂ und F₂AsOR' (R' = CH₃, C₂H₅, n-C₃H₇, n-C₄H₉ und R = CH₃, C₂H₅) dargestellt werden¹⁻³.

$$\gg$$
SiOR + AsF₃ $\rightarrow \gg$ SiF + F₂AsOR (1)

$$As(OR)_3 + AsF_3 \rightarrow F_2AsOR + FAs(OR)_2$$
⁽²⁾

$$AsO(OR)_3 + AsF_3 \rightarrow F_2AsOR + \frac{1}{n}[AsOF(OR)_2]_n$$
(3)

$$2As(OR)_{3} + AsF_{3} \rightarrow 3FAs(OR)_{2}$$

$$2FAs(OR)_{2} \rightarrow As(OR)_{3} + F_{2}AsOR$$

$$(4)$$

Die nach Gleichungen (1)-(3) gebildeten Ester können durch Destillation isoliert werden; bei (4) wird ein Gleichgewicht vermutet, aus dem das F_2AsOR abdestilliert werden kann^{2, 3}.

Systematische Versuche zur Darstellung der Fluorarsenigsäureester sind nicht beschrieben. Deshalb wird in der vorliegenden Arbeit berichtet über:

(i) Systematische Versuche zur Darstellung der Fluorarsenigsäureester F_2AsOR und $FAs(OR)_2$.

(ii) Anwendung des Reaktionsprinzips von Gleichungen (2) und (4) zur Darstellung von Fluorarsenigsäureestern mit verschiedenen Resten R.

(iii) Untersuchung des Gleichgewichtssystems $AsF_3/As(OR)_3$ bei verschiedenen Resten R.

ERGEBNISSE UND DISKUSSION

Zur Darstellung der Fluorarsenigsäureester wurden folgende Umsetzungen durchgeführt:

(a) Bei der Alkoholyse von AsF₃ mit ROH sollten die Ester F₂AsOR und FAs(OR)₂ entstehen. Das zur Darstellung von Verbindungen wie $X_nAs(OR)_{3-n}$ (n = 0, 1, 2 und X = Cl, Br) und F₂AsNR₂ (R = CH₃, C₂H₅, n-Propyl, n-Butyl, cyclo-Hexyl; NR₂ = Pyrrolidinyl, Piperidinyl, Morpholinyl) bewährte Reaktionsprinzip der Alkoholyse oder Aminolyse eines Arsenhalogenides läßt sich auf AsF₃ und ROH nicht anwenden⁴⁻¹¹.

Die entsprechend Gleichung (5) erwartete Reaktion tritt auch bei längerem Rückflußkochen in verschiedenen Lösungsmitteln nicht ein.

$$AsF_3 + ROH \rightarrow F_2AsOR + HF$$
(5)

Mit Tripropylamin oder Pyridin als Hilfsbasen entstehen im Bombenofen zwischen 80 und 170 °C die Ester F₂AsOR [R = CH₃, C₂H₅, C(CH₃)₃]. Allerdings sind die Ausbeuten so gering, daß das Verfahren nicht präparativ eingesetzt werden kann.

Der unterschiedliche Verlauf von Alkoholyse und Aminolyse des AsF_3 kann mechanistisch gedeutet werden: Wegen des Lewis-Säurecharakters des AsF_3 werden Substitutionen der Fluoratome durch Addition eines freien Elektronenpaars des Substituenten an das AsF_3 eingeleitet^{12,13}. Aus einem cyclischen Übergangskomplex erfolgt nach Gleichung (6) Bindungsabbruch und -Neubildung^{1,11,14-17}.

$$AsF_{3} + E-H \rightarrow \uparrow \downarrow \Rightarrow F_{2}As-E + HF \qquad (6)$$

$$E-H$$

Bei $E = NR_2$ und NHR reicht die Basizität zur Adduktbildung und zur Bindung des HF aus. Bei E = OR scheint die Basizität zur Adduktbildung oder Bindung des HF nicht auszureichen. Der bei Basenzusatz gebildete Komplex $F_3As \leftarrow NR_3$ erschwert einen Angriff auf das AsF_3 und bedingt hohe Reaktionstemperaturen.

(b) Bei der Umsetzung von AsF_3 mit Na-Alkoholaten wurde eine Reaktion nach Gleichung (7) erwartet:

$$AsF_{3} + RONa \rightarrow \uparrow \downarrow \rightarrow F_{2}AsOR + NaF$$

$$RO-Na$$
(7)

Trotz Variation der Reaktionsbedingungen entstanden nicht die erwarteten Ester, sondern schwerlösliche, weiße Festkörper. Vermutlich handelt es sich um salzartige Verbindungen wie Na[AsF_n(OR)_m] (m + n = 4). Die Elementaranalysen konnten zur Klärung nicht herangezogen werden, da die Produkte NaF enthalten.

(c) Die leichte Spaltbarkeit der As-N-Bindung mit aciden Molekülen^{14–16,} ^{18–24} läßt eine Umsetzung des Dimethylaminodifluorarsins $F_2AsN(CH_3)_2$ mit Alkoholen nach Gleichung (8) erwarten.

$$F_2AsN(CH_3)_2 + ROH \rightarrow F_2AsOR + HN(CH_3)_2 \uparrow$$
(8)

Die mit einigen Alkoholen durchgeführten Spaltungen zeigen, daß der Reaktionsverlauf wesentlich komplexer ist. Die Spaltung setzt bei Raumtemperatur ein und führt zwischen 80 und 130 °C zu einem Gemisch von FAs(OR)₂, F₂AsOR, HN(CH₃)₂, Ammoniumsalz und F₂AsN(CH₃)₂. Diese Produktverteilung läßt den Schluß zu, daß das nach Gleichung (8) gebildete F₂AsOR in einer Gleichgewichtsreaktion in AsF₃ und FAs(OR)₂ zerfällt und AsF₃ mit einem Teil des freien Amins zu F₂AsN(CH₃)₂ und Ammoniumsalz weiterreagiert. Als präparative Methode zur Darstellung der Fluorester ist die Spaltung wenig geeignet.

(d) Die Umsetzung des Borsäureesters $B(OCH_3)_3$ mit AsF₃ bzw. des Arsenigsäureesters As(OCH₃)₃ mit BF₃ führt nach Gleichungen (9) und (10) zur Bildung der Arsenigsäureester. Entsprechend dem allgemein angenommenen Reaktionsmechanismus^{1, 11, 14-17} werden die in Gleichung (9) und (10) formulierten Übergangskomplexe durchlaufen.

$$F_{2}B-F$$

$$BF_{3} + As(OCH_{3})_{3} \rightarrow \uparrow \downarrow \qquad \rightarrow F_{2}BOCH_{3} + FAs(OCH_{3})_{2} \qquad (9)$$

$$O-As(OCH_{3})_{2} \qquad \downarrow$$

$$CH_{3}$$

$$(CH_{3}O)_{2}B-OCH_{3}$$

$$B(OCH_{3})_{3} + AsF_{3} \rightarrow \uparrow \downarrow \qquad \rightarrow (CH_{3}O)_{2}BF + F_{2}AsOCH_{3} \qquad (10)$$

$$F-AsF_{2}$$

Die Reaktionsprodukte bestätigen das Reaktionsschema. Die Spaltungen sind von zahlreichen Folgereaktionen wie dem Zerfall des $BF(OCH_3)_2$ in F_2BOCH_3 und $B(OCH_3)_3$ und der Dimerisierung des F_2BOCH_3 begleitet, so daß sie als präparative Methode nicht eingesetzt werden können.

(e) Bei der Umsetzung von AsF₃ mit As(OR)₃ entstehen nach Gleichung (2) und (4) die Ester F₂AsOR und FAs(OR)₂. Um eine möglichst breite, experimentelle Grundlage zu haben, werden zwölf Arsenigsäureester mit AsF₃ in verschiedenen Mengenverhältnissen umgesetzt. Die Auswertung der ¹⁹F-NMR-Spektren ergab, daß das Reaktionsprinzip von Gleichung (2) auf die eingesetzten Ester—unabhängig von R—anwendbar ist und zu einem Gleichgewichtsgemisch führt, in dem die vier Komponenten AsF₃, F₂AsOR, FAs(OR)₂ und As(OR)₃ enthalten sind.

$$AsF_3 + As(OR)_3 \rightarrow F_2AsOR + FAs(OR)_2$$
⁽²⁾

Tabelle 1 zeigt die ¹⁹F- und ¹H-NMR-Daten der präparierten Ester. Die ¹⁹F-Signale liegen etwa 20 ppm getrennt; die der höherfluorierten Ester sind zu tieferem Feld verschoben. Bei den ¹H-Signalen bewirkt die verschiedene Fluorsubstitution nur eine geringe Änderung der chemischen Verschiebung der Signale

TABELLE 1

Rest, R	¹⁹ F-Resonanz/ppm (bezogen auf CCl ₃ F)		¹ H-Resonanz/ppm (bezogen auf TMS)†		
	Mono- fluorester	Difluor- ester	H _x §	H _y	H _z
Methyl	85	67	3,7(2 s)		
Äthyl	81	65	4,1(2 quart)		1,23(t)
n-Propyl	81	64	4,0(2 t)	1,63(sex)	0,90(t)
Isopropyl	76	62	4,7(2 sept)		1,23(d)
n-Butyl	80	64	4,0(2 t)	1,43(m)	0,90(m)
Isobutyl	79	63	3,7(2 d)	1,80(non)	0,87(d)
secButyl	74	61	4,4(2 sex)	1,40(m)	0,90(t)
tertButyl	63	54	1,4	42(2 s)	<u> </u>
n-Pentyl	81	64	3,9(2 t)	1,36(m)	0,90(m)
cyclPentyl	77	61	4,9(2 quint)		1,67(m)
n-Hexyl	81	64	4,0(2 t)	1,40(m)	0,90(m)
cyclHexyl	75	61	4,4(m)		1,57(m)

¹⁹F- und ¹H-NMR-spektroskopische daten* der präparierten monofluorund difluorarsenigsäureester $FAs(OR)_2$ und F_2AsOR

* s = Singulett, d = Dublett, t = Triplett, quart = Quartett, quint = Quintett, sex = Sextett, non = Nonett, m = Multiplett.

$$H_x H_y H_z$$

§ Mittelwerte der H_x-Signale der entsprechenden Monofluor- und Difluorester.

der an den Sauerstoff gebundenen CH_n-Gruppen. Die ¹H-Signale der Difluorester liegen wie erwartet bei tieferem Feld. Abb. 1 zeigt als repräsentatives Beispiel das ¹⁹F-Spektrum von F₂AsOCH₃ und FAs(OCH₃)₂ bzw. die ¹H-Signale der α -CH_n-Gruppen im F₂As-O-CH₂-(CH₂)₂-CH₃ und FAs-[O-CH₂-(CH₂)₂-CH₃]₂ und im F₂As-O-C(CH₃)₃ und FAs-[O-C(CH₃)₃]₂.

Abb. 1. ¹H- und ¹⁹F-NMR-Spektren einiger Mono- und Difluorarsenigsäureester.

Tabelle 2 zeigt die Mengenverhältnisse von F_2AsOR und $FAs(OR)_2$ im Reaktionsgemisch, das bei verschiedener Stöchiometrie der Ausgangsverbindungen AsF_3 und $As(OR)_3$ erhalten wurde.

Nach dem üblichen Reaktionsmechanismus verläuft die Bildung des F_2AsOR bzw. $FAs(OR)_2$ über einen vier-Zentren-Mechanismus wie in Gleichung (11) und (12):

$$AsF_{3} + As(OCH_{3})_{3} \rightarrow \uparrow \downarrow \qquad \rightarrow F_{2}AsOR + FAs(OR)_{2} \qquad (11)$$

$$O-As(OR)_{2}$$

$$\downarrow R$$

$$AsF_{3} + FAs(OR)_{2} \rightarrow \uparrow \downarrow \qquad \rightarrow 2F_{2}AsOR \qquad (12)$$

$$O-AsFOR$$

$$R$$

TABELLE 2

MENGENVERHÄLTNISSE $F_2AsOR/FAs(OR)_2$ bei Raumtemperatur*

Rest, R	Eingesetzte Stöchiometrie As(OR) ₃ :AsF ₃					
	2:1	1:1	1:2			
Methyl	0,35	1,64	12,5			
Äthyl	0,49	1,39	9,9			
n-Propyl	0,28	1,64	9,0			
Isopropyl	0,23	1,80	19,8			
n-Butyl	0,32	1,95	≥20			
Isobutyl	0,57	4,57	≥20			
secButyl	0,17	1,66	13,2			
tertButyl	0,12	1,50	≈ 20			
n-Pentyl	0,28	1,67	≥20			
cyclPentyl	0,30	1,96	≥20			
n-Hexyl	0,36	2,18	≥20			
cyclHexyl	0,35	1,37	≈ 20			

* Mengenverhältnisse bestimmt durch Integration der ¹⁹F-Signale.

Die sterische Abschirmung des Basenzentrums, d.h. des Sauerstoffatoms, durch die verschiedenen Alkylgruppen bedingt eine unterschiedliche Reaktivität und führt zu den verschiedenen Mengenverhältnissen der Ester bei verschiedenen Resten R. Der Effekt ist jedoch gering, da — wie Tabelle 2 zeigt — die Werte recht dicht um den jeweiligen Mittelwert liegen.

Die Bestimmung der Gleichgewichtskonstanten ist nicht möglich, da die ¹H-NMR-Signale für eine Auswertung der integrierten Signale zu dicht liegen.

Die Aufnahme der Spektren zwischen -60 °C und +60 °C ergab nur eine geringe Temperaturabhängigkeit der Gleichgewichte.

EXPERIMENTELLER TEIL

Wegen der Hydrolyseempfindlichkeit aller eingesetzten Arsenverbindungen werden die Umsetzungen in absoluten Lösungsmitteln unter trockenem N_2 -Schutzgas durchgeführt.

Die in (a), (b), (c) und (e) beschriebenen Umsetzungen werden nach konventioneller Arbeitstechnik durchgeführt. Die Reaktanden werden im entsprechenden stöchiometrischen Verhältnis vorgelegt oder zusammengetropft und bis zur Beendigung der Umsetzung bzw. der Einstellung des Gleichgewichts unter Rückfluß erhitzt. In (a), (b) und (c) wird Alkohol oder Benzol als Lösungsmittel eingesetzt; die Ansätze in (d) und (e) werden ohne Lösungsmittel durchgeführt.

Bei den Ansätzen (d) werden die flüssigen Komponenten in eine Ampulle eingewogen; die Menge des BF₃ wird durch eine Druck-Volumenmessung in einem bekannten Volumen der Stockschen Apparatur bestimmt und durch Kühlen der Ampulle auf -196 °C einkondensiert.

Das AsF₃ wird durch Umsetzung von CaF_2/As_2O_3 mit konzentrierter H_2SO_4 oder durch Fluorierung von AsCl₃ mit SbF₃ gewonnen^{10, 11}. Das F₂AsN-(CH₃)₂ wird aus AsF₃ und HN(CH₃)₂ in Äther präpariert^{10, 11}. Die Arsenigsäureester As(OR)₃ werden durch Alkoholyse des Tris(dimethylamino)arsins mit den entsprechenden Alkoholen dargestellt²⁵. Alle Verbindungen wurden durch ihre IR, ¹⁹F und ¹H-NMR-Spektren und durch Elementaranalysen identifiziert.

DANK

Wir danken Herrn Prof. Dr. J. Grobe für seine Anregungen und Diskussionen sowie die Unterstützung der Arbeit durch Mittel des Institutes. Der Deutschen Forschungsgemeinschaft danken wir für die finanzielle Unterstützung der Arbeit.

LITERATUR

- 1 R. J. SINGER, M. EISENHUT UND R. SCHMUTZLER, J. Fluorine Chem., 1 (1971/72) 193.
- 2 L. KOLDITZ UND D. HASS, Z. Anorg. Allg. Chem., 310 (1961) 225.
- 3 L. KOLDITZ UND D. HASS, Z. Anorg. Allg. Chem., 307 (1961) 290.
- 4 A. MICHAELIS, Justus Liebigs Ann. Chem., 320 (1902) 271.
- 5 G. KAMAI UND Z. L. KHISAMOVA, Zh. Obshch. Khim., 26 (1956) 125.
- 6 H. FUNK UND H. KÖHLER, J. Prakt. Chem., 13 (1961) 322.
- 7 G. KAMAI UND N. A. CHADAEVA, Chem. Abstr., 59 (1963) 11231e.
- 8 G. KAMAI UND R. G. MIFTAKOVA, Dokl. Akad. Nauk SSSR, 151 (1963) 853.
- 9 G. A. OLAH UND A. A. OSWALD, Can. J. Chem., 38 (1960) 1431.
- 10 G. A. OLAH UND A. A. OSWALD, Can. J. Chem., 38 (1960) 1428.
- 11 F. KOBER, J. Fluorine Chem., 2 (1972/73) 247.
- 12 A. A. WOOLF UND N. N. GREENWOOD, J. Chem. Soc., (1950) 2220.
- 13 E. L. MUETTERTIES UND W. D. PHILLIPS, J. Amer. Chem. Soc., 79 (1957) 3686.
- 14 H. J. VETTER, H. NÖTH UND U. HAYDUK, Z. Anorg. Allg. Chem., 331 (1964) 35.
- 15 K. SOMMER, W. LAUER UND M. BECKE-GOEHRING, Z. Anorg. Allg. Chem., 379 (1970) 48.
- 16 L. S. SAGAN, R. A. ZINGARO UND K. J. JRGOLIC, J. Organometal. Chem., 39 (1972) 301.
- 17 F. KOBER, Z. Anorg. Allg. Chem., 397 (1973) 97.
- 18 G. KAMAI UND Z. L. KHISAMOVA, Dokl. Akad. Nauk SSSR, 105 (1955) 489.
- 19 K. MÖDRITZER, Chem. Ber., 92 (1959) 2637.
- 20 H. J. VETTER UND H. NÖTH, Z. Naturforsch., 19b (1964) 166.
- 21 T. TZSCHACH UND W. LANGE, Z. Anorg. Allg. Chem., 326 (1964) 280.
- 22 R. H. ANDERSON UND R. H. CRAGG, Chem. Commun., (1970) 425.
- 23 F. KOBER, Z. Anorg. Allg. Chem., 398 (1973) 127.
- 24 F. KOBER, Z. Anorg. Allg. Chem., 400 (1973) 285.
- 25 F. KOBER UND W. J. RÜHL, Z. Anorg. Allg. Chem., im Druck.